If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+850=0
a = -16; b = 0; c = +850;
Δ = b2-4ac
Δ = 02-4·(-16)·850
Δ = 54400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54400}=\sqrt{1600*34}=\sqrt{1600}*\sqrt{34}=40\sqrt{34}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{34}}{2*-16}=\frac{0-40\sqrt{34}}{-32} =-\frac{40\sqrt{34}}{-32} =-\frac{5\sqrt{34}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{34}}{2*-16}=\frac{0+40\sqrt{34}}{-32} =\frac{40\sqrt{34}}{-32} =\frac{5\sqrt{34}}{-4} $
| -9.2/6.5=b/8.7 | | (5(17)+79)+z=180 | | 3x-8=5x-21 | | 4x-9+3x-2+3x-9=180 | | 10/3x=7/4 | | 5x+14x=3 | | 10=k/6+16 | | 3x+14=5x−6 | | (8x+61)+(5x+79)=360 | | -16t+800=0 | | 5x-34=2x+38 | | 7x−5=2x | | 10=5c-(40)-3c | | -98=6m-8 | | -3.35/11=r/12 | | 2b=232 | | O.5(x+6)=-3 | | -9-7x=131 | | 6(5x+1)= | | 4-x=12+x | | 12q=264 | | -m+7=-7 | | (2x+5)=40 | | 5x+19=2x+43 | | 17j=187 | | (2x5)=40 | | 7m+4=6 | | 2.7=1.0275/99h | | w/16=14 | | 0.30+14p=0.45+10p | | 3b-7=41 | | 7m+4=-6 |